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THE KURAMOTO-SIVASHINSKY EQUATION:
SPATIO-TEMPORAL CHAOS AND INTERMITTENCIES FOR A
DYNAMICAL SYSTEM

Basil Nicolaenko
Center for Nonlinear Studles and Theoretical Division
Los Alamos National Laboratory
Loas Alamos, New Mexico 87545, U.S.A.

ABSTRACT

We survey some recent results on the finite-dimensional behavior of the Kuramoto-
Sivashinsky equation. We outline how it is rigorously equivalent to a finite dimensional
cdynamical system on a finite “inertial” manifold; a geometric approach to the construc-
tion of such a manifold is given. We give sorae examples of computational simulations

supporting the evidence for a low-dimensional vector field which rules the bifurcations of
the inertial manifold.
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I. INTRODUCTION

During the last decade we have seen a number of major developments which show that
the long-time behavior of solutions of a very large class of partial differential equations
(PDEs) possess a striking resemblance to the behavior of solution of finite dimensional
dynamical systems, or ordinary differential equations (ODEs). The first of these advances
was the discovery (by a number of researchers) that a dissipative PDE has a compact,
maximal attractor X with finite Hausdorff and fractal dimensions. More recently [6, 12-15)
it was shown that some of these PDEs possess a finite dimensional inertial manifold, i.e.,
an invariant manifold that contains the attractor X. For the later equation, the connection
with ODEs is no longer a mere resemblance, instead it has become a striking reality! The
reason for this is that where one restricts the PDE to the inertial manifold one obtains an
ODE, which we call an inertial form for the given PDE. Since an inertial manifold contains
the universal attractor, this means that the long-time behavior ol solutions of a PDE with
an inertial manifold is completely determined by the inertial form.

There is, indeed, a class of phenomena of incipient turbulence which can be modeled
by scalar field PDEs undistinguishable i practice froin dynamical systems: weak tur-
bulence on interfaces between complex flows, upon which appear well localized patterns
and structures. Such are quasiplanar flame fronts; thin viscous fluid films flowing over
inclined planes; and even, under some conditions, dendritic phase change fronts in binary
alloy mixtures [30-31, 38, 40-42]. In such physical contexts, the onset of destabilization of
the simplest laminar regime is heralded by the cohesive crjanization of cells and patteins
(often hexagonal) on the moving and buckling front or interface.

Many such interfaces with localized turbulence, includiny; flames, can be modeled by the
simple Kuramoto-Sivashinsky (K-S) PDE [33-36, 38]. This equaticn accurately accounts
for the thermo-diffusive and convective mechanics of flow-field coupling across an interface
before turbulence breaks away from the interface and reaches deenly into the fluid.

In one space dimension, the K-S equation modeling a stnall perturbation u(x,t) of a
metastable planar front or interface s

Ut + Viugaas + Usa + %(u.)’ =0, (z,t)eR! x Ry,

: (1.1)
u(’io) - u"(’) J u(’ + L) - “( £ ‘)

Here the subscripts indicate partial differentiation, v is a pos tive fourth-order viscosity
and u, is L-periodic; L being the size of a typical pattern scaly. The natural bifurcation
parameter is the renormalized dimensionless parameter L = L/(2v /7). (Z] is also the number
of linearly unstable Fourier modes, where the symbol | | desigiates the integer part of a
real number.



In a previous work our computer simulations of the K-S equation (28] demonstrated
an uncanny, low-dimensional behavior for the values of the bifurcation parameter up to L
= 3.67 (L = 23.1). A low dimensional structure does also underline an example of onset
of chaos at L = 5.42 (L = 34.05). In general, the attracting solution manifolds undergo a
complex bifurcation sequence including multimodel fixed points, invariant tori, traveling
wave trains and homoclinic orbits. Moreover, amidst lengthy and complex chaotic time
series, puzzling intermittencies do occur at random: these are protracted oscillations in a
small neighborhood of some metastable state. We conjectured in [28] that such a behavior
shudows a perturbed homoclinic orbit and betrays a hidden underlying low-dimensional
dynamical system.

The long time behavior of such smooth dissipative differential systems is characterized
by the presence of an universal attractor X toward which all trajectories converge. The
structure of X may be very complicated even in the case of simple ordinary differential
equations: X may be a fractal on parafractal set. In the case of dissipative partial differen-
tial equations, although the phase space (i.e. the function space) is an infinite dimensional
space, X has finite fractal dimension (see [2-5] [41-42]). However, the already possibly
complex nature of X is in this case further complicated by the infinite number of Jegrees
of freedom of the ambient space. In the case the dissipative system admits an inertial
manifold the attractor is dynamically embedded in a finite dimensional manifold and thus
becomes the attractor of a dynamical system with a finite number of degrees of freedom.

Since [28], it has indeed been demonstrated that the K-S equations are rigorously
equivalent to a finite-dimensional dynamical system. The approach (introduced in [12-15))
consists in constructiug a finite dimensional Lifschitz manifold 3~ (called inertial) in the
phase space of the PDE such that:

(i) T is invariant and has compact support; that is if (S(¢,))i»0 is the nonlinear semi-
group associated with the iniiial value problem for the equations, then S(¢, ) is contained
in ¥ for all ¢ >o0.

(ii) All solutions converge exponentially to 3. In particular, the universal attractor,
X, Is included in ¥ and the dissipative system reduces on ¥ to a finite system (called an
inertial ODE).

liii) asymptotic completeness holds: for every initial value for the full K-S equation,
there exists some initial point on the inertial manifold 3 decreases exponentially to zero
(e,

The last point does fully establish the equivalence between the PDE and the inertial
ODE on ¥. Concretely, given a chaotlic trajectory for the exact PDE, we can find a finite
dimensional chaotic trujectory for the Inertial ODE, such that the two trajectories converge
exponentially.



The existence of such an inertial manifold has been demonstrated [6, 14, 15, 37| for
the K-S equation with Neumann boundary conditions. In similar results hold for a PDE
model of 2-D weak turbulence in Kolmogorov shear flows [8].

Hence, weak turbulence on interfaces modelled by the K-S equation is strictly equiva-
lent to chaos for a finite inertial dynamical system. Still, weak spatio-temporal turbulence
involves complex mechanisms within the bifurcations of the inertial manifold. ‘To unravel
these, we must obtain a clear picture of those few nonlinear states (spatial structures)
which form a reduced nonlinear coordinates b.sis for the manifold. A nonlinear represen-
tation of the inertial manifold must be constructed, based on reduced coordinates patches,
with the goal of establishing reduced, low-dimensional, inertial normal forms for the iner-
tial ODEs, valid for some range of the bifurcation parameter. These inertial normal forms

control the global vector field bifurcations into weak turbulence and ultimately account
for the universality of transition to chaos in infinite dimensional systems.

In this conference presentation, we propose to give a partial survey of the quastions
raised above, in the context of the K-S equation. Rather than another catalogue of bifurca-
tions, we establish that successive transitions to chaos and intermittent relaminarizations
are ruled by the stable and unstable manifolds of a small number of nonlinear states. This
reduced representative sample changes along with the bifurcation parameter; its dimen-
sionality is much smaller than the rough estimates for the dimension of the inertial manifold
obtained in [6, 14-15]. In part III, we evidence such low dimensional canonical vecto: field
bifurcations for regimes within 23.1 < L < 34.05 (3.67 < L < 5.42, where [L] is the number
of unstable modes); for such regimes, the fractal dimension of chaos does not exceed 5. We
have systematically searched for classical dynamical systems bifurcations and for multiple
basins of attractions for the K-S model. We used a general PDE solver code developed by
J. M. Hyman at LANL [29, 30]. The interactions of multiple basins through their frac-
talized boundaries have been evidenced. Intermittencies in turbulent time series are one
of the key mechanisms in bridging the gap between PDEs and dynamical systems. They
enable us to track the unstable manifolds of key hyperbolic points. These intermittencies
are random time windows where dynamics remain highly oscillatory yet are confined in a
relatively small neighborhood of some metastable point or circle. Such critical states are
the natural candidates for local nonlinear coordinates cf the inertial manifold.

In part IV, we survey an intrinsic geometric construction of inertial manifolds, inspired
by the exponentially fast lock-up of dynamical trujectories onto such manifolds. This
surveys joint work with P. Constantine, C. Foias and R. Temam (6]



II. OVERVIEW OF COMPUTATIONAL SIMULATIONS AND THEORETICAL RESULTS

We have normalized the K-S equation to an interval of length 2x; set the damping pa-
rameter to the original value derived by Sivashinsky, v = 4, and introduced the bifurcation
parameter a = 412 = L3/4x?. The equation can now be written as

Up + 4duysas + a[u.. + %(u’)ﬂl =0, 0< z < 2n,

. (2.1)
u(z + 27,¢) = u(z,t) , u(z,0) = u,(z)
This equation is equivalent to Eq. (1.1) with a different time scaling.
The mean value of the solution to Eq. (2.1)
ir
m(t) = = /., u(z, t)dz (2.2)
satisfies the drift equation
(e e FLJ 3
) = 22 /. (us)dz. (2.9)
To norinalize this drift to zero, we numerically solved the equation for
v(z, t) = u(z,t) -~ m(t). (2.4)
That is, the drift-free K-S equatior is
v + ‘U,.’. + a[".. + %(”.)’] + ﬁl(‘) = (. (2.5)

we have scanned the domain 54< a < 320, i.e., 3.67< r < 8.95,25.8 < L < 56.2. Many previous
investigations have solved Fq. (1.1) on an interval [0,L], with viscosity v = 1 [31]. Our
rescaled time t in (2.1) and the usual unnormalized time tps,, are related through:

tpnye = 414t = a¥t/4; (2.0)

the rescaling grows quadratically in a. The bifurcations diagrams (Fig. 1, 2, 3) were
obtained by scanning in a and varying iritial data.

In our computer experiments, we found that high precision was necessary because of
the extreme sensitivity of the simulations to numerical accuracy. Nonconverged numerical
solutions of Eqs. (1.1) and (2.1) can occur In regimes we are interested in if the time
integration errors are greater than 10~* per unit time-step. In fact, small effects of the order
of 10-° in the energy for some sensitive Fourier modes critically impact on the nonlinear
dynamics. To alleviate this, we use in our calculations high-precision, pseudospectral
approximation to the spatial derivatives [9, 10] and a variable time-step, variable-order
integration method in time to keep the solution errors between 10-* and 10~!° per unit

]



time [29, 30]. The PDE solver was an all purpose code developed by J. M. Hyman at
LANL [29, 30].

A typical example of the extreme numerical sensitivity of the numerical solutions to
the K-S equation is the disappearance of homoclinic orbits if the precision is too low. The
hyperbolic fixed points degenerate into stable fixed points with a numerically artificial
basin of attraction the size of the error control. Because of the artificially stable fixed
point, our numerical results of the K-S equation differ from some of the previously pub-
lished simulations that relied on second-order schemes with only modest control over time
integration errors.

We systematically tracked the domains of stability of each attractor with respect to
the bifurcation parameter by varying a and reinitializing v(x,0) to the final solution from
the previous run with a different a. Many problems were recalculated several times with
different grid resolutions and time truncation error criteria to ensure that the numerical
solutions were converged within an acceptable accuracy.

A remarkable feature of the K-S equations is the alternating sequence of intervals in
a containing laminar behavior (some fixed point is ultimately attracting) with intervals of
persistent oscillatory and/or chaotic behavior. Let I; = [a;, a,+:] be the j** interval. Then
I, = [0, a;], where at a, comes the first Hopf bifurcation; a classical pitchfork steady-state
bifurcation occurs at a = 4 < a,. For j even, I; is characterized by the ultimate decay to a
globally attracting fixed point &,(z),q = (/2)+1,5 2 2. These fixed points have most of their
energy concentrated in a cos qx mode. The higher harmonics appear with exponentially
decreasing energy and the fixed point has a lacunary Fourier expansion:

ig(z) =a14c08qz + €a24c08292

2 n—-1 ’ (2-7)
+ e“ayqco83qz + -+ €" " apgcoongz + - -

where ¢ = j/2 + 1. Numerically, we have found that a;, is O(1) and ¢ & 10~!. We call these
sinks associated with I;, j even, cellular states. When the Fourier expansion (2.7) of a
cellular state is dominated by cos qx as we call it a g-moda! cellular state.

These relaminarization intervals I;, j even, are consistent with experiments at small and
moderate Reynolds numbers [40]. Moreover, as j and a increase, the ultimate decay follows
long periods of transient chaos. Translent chaos is observed in the K-S equations beginning
in the interval I,, provided enough modes are excited in the initial data. Moreover, as a

increases, the mean lifetime of transient chaos increases exponentially in L: this growth
makes transient chaotic intervals undistinguishable in practice from chaotic intervals in
the strongly chaotic regimes (say, when the fractal dimension of the universal attractor,
X, for the flow is large, dimg(X) > 10).



When j is odd, the intervals I; have persistent oscillatory and /or chaotic behavior. For
moderate values of a (say, up to I;), the quasiperiodic and/or chaotic behavior refiects a
competition between the previous (5 + 1)/2 cellular state, dominated by the cos((; + 1/2)z)
mode, and the (5 +3)/2 cellular state, dominated by cos((;5 +3/2)z). This competition creates
a complex interplay between temporal chaos and spatial coherence. In some sense, the
(low-dimensional) temporal chaos corresponds to adjustment from one (low-dimensional)
space pattern to the next one. Unfortunately, this simple picture is not borne by our
computations at strongly chaotic regimes (dimr(X) > 6) where a zoo of strange hyperbolic
fixed poinis appear in intermittencies. Their strangeness resides in that they are not
cellular in the sense of (2.7) and possess a broad energy spectrum band covering all the

unstable modes up to [I].

Finally, the best current estimate [15] on the dimension of ¥°, the inertial manifold for
Eq. (2.1) is:

dim(d]) < ca’'®, (2.8)
which is still too large when compared to the upper estimate of the fractal dimension of
the universal attractor X obtained in [36]:

d7(X) € ca®™® . (2.9)

The severe numerical sensitivity of the K-S equation demonstrates that the dynamics of
the inertial ODE and the bifurcations of the inertial manifold are very sensitive to the

accuracy of numerical algorithms. Conventional PDE algorithms do not carry over.



II1. LOW DIMENSIONAL CHAOS FOR THE KURAMOTO-SIVASHINSKY EQUATION

In this section we describe the behavior of the solutions to the K-S equation for parameter
values in the intervals I, I;, Jo,54 < a < 117.5, that is 3.67 < L < 5.42,23.1 < L < 34.05. The
windows I, (oscillatory, 17.3 < a < 22.5) I; (2-cell state globally attracting, 22.5 < a < 43) and
I, (quasiperiodicity, 43 < o < 54) were investigated in [28]; results are summarized in Fig.
1 and Fig. 2. Our preliminary catalogue for the intermediate values of a, 54 < a < 117.5,

is presented in Fig. 3. It contains a sequence of “laminar” intervals and intervals with
complex oscillatory behavior:

I = fd<a <8675 : a 3-cellular state global attractor
Iy = 67.5<a <93 : complex oscillatory behavior

Is = 93 < a < 117.5: a 4-cellular state global attractor
I = 117.5 < a < 146.5 chaos

Within these intervals, we evidence canonical vector field bifurcations leading to quasi-
periodic motion and chaos, and systematically explore multiple basins of attraction, in a
low-dimensional situation. The mechanisms which we pin down are truly generic for both
onset of chaos and relaminarization crises in regimes of “strong” chaos (see part IV), and
more representative than the bifurcations in I; - Iy studied in [28]. The classical homoclinic
loop bifurcations from a saddle point observed around a ~ 22.5 and a ~ 43 do not reoccur;
repeated onsets of oscillatory, and/or chaotic regimes are in fact triggered by perturbed
homoclinic loops bursting from spiral hyperbolic points. T, tori (invariant circles) are
usually metastable. Strange fixed points are the rule rather than the exception, spanning
the range from u = 49.5 through a=93. A travelling beating wave obsreved in Fig. 1b
from a=49.5 to a=>54 is a true harbinger of such a strange (two-humped) fixed point. Also,
there is a wealth of reverse bifurcation, and attractors which alternatively destabilize and
restabilize again at some larger a! Last, the crisis of chaos observed at a=93 is likely
triggered by the two-humped strange fixed point sitting on the basin bouadary of the
chaotic attractor and shadowing the turbulent time series through multiple intermittencies.

Such low-dimensional mechanisms pervade the strongly chaotic regimes of part IV.

In the discussion below, the “energy” is the integral of (u,)? and the “energy in mode
k” is the modulus of the &** Fourier coefficient.

The trimodal cellular state @s(a) is & global attractor in /; until it bifurcates at «a=867.5.
The bifurcation is neither of Hopf type, nor through a classical homoclinic loop. This is
explored in Figs. 4-7, where u, = §;(67.5) = 2.95c0s3z + 0.44cosbz + - - -. Figure 4 heralds two
regimes: at roughly periodic intervals the orbit bursts away on the unstable manifold of
s and puffs into a spiked intermittency at a much lower energy level; then it spirals back
around the hyperbolic point &s. Figure 5 confirms that the energy in the first mode is low

8



during the small oscillations around the spiral hyperbolic point @,; the bursts have a much
higher level in the first mode. Small amounts of energy trigger the bursts around the loop.
The energy in the third mode, Fig. 6, is the mirror image of Fig. 5. It oscillates in a
small neighborhood of 2.9, before bursting away from @&, into sharp spikes at much lower
levels. The energy in mode 6 (Fig. 7) is substantial in the vicinity of #,, at a level of 0.4.
It clearly shows two different scales in the dynamics of the orbit next to ds; first very high
frequency, small amplitude oscillations around &,, followed by slower spiraling around the
trimodal point. This bifurcation has many of the characteristics of a perturbed Shilnikov
homoclinic loop [25]. This is a homoclinic loop associated with a spiral hyperbolic point
and persists until a=72.

The Shilnikov loop is quickly deformed into a homoclinic tangle, as evidenced in Figs. 8-
10 (a=68, initial conditions continued from a=67.5). The duration of the chaotic excursions
is now comparable to the transit times in the vicinity of @;, any semblance of periodicity
is lost and spiked bursts occur at random times (Fig. 8). The energy in mode one (Fig.
9) demonstrates that the high frequency, small oscillations around @s prevail upon the
spiraling time-scale dynamics; a computer movie “zoom” onto such time intervals reveals
transient dynamics hardly distinguishable from those on a metastable circle (Torus T;).
Energy in mode 3 (Fig. 10) confirms the picture of an homoclinic tangle between the
stable and unstable manifolds of the spiral hyperbolic point &3, with chaotic time series
interrupted by random intermittencies around is. The above generic picture will permeate
the onset of chaos at a=117.5.

At a=T2, a strange fixed point u’(a) suddenly becomes a global attractor. It is not
related to any cellular state; its Fourier expansion is rather flat, with energy present in all
first six modes (Z = 4.24). u* has a typical profile with two humps, a large one and a small
one (Fig. 11). An entirely similar two-humped structure has been observed as a traveling
and beating wave, from a=49.5 to a=>54; the strange fixed point u*(a) has indeed undergone
a reverse bifurcation back to stability! It persists as a global sink, until it undergoes some
kind of Hopf bifurcation at a=83.75. As the contour levels show in Fig. 12 (a=84.25,
initial data by continuation), the rapid oscillations are strictly localized in space, on the
top of the higher hump. Such a spatio-temporal localization is a forerunner of spatially
concentrated zones of turbulence. This peculiar example of spatial complexity does not
seem to be ruled by a standard Hopf mechanism. At a=88, the localized oscillating pattern
bifurcates into a travelling beating wave. The contour levels plot (Fig. 13, a=87, initial
data by continuation) manifest fast oscillations still localized on the higher hump. At
a=89, the picture reverts to chaotic behavior, as if the “horseshoe” attractor observed

9



from 68 < a < 72 had undergone a basin boundary crisis. The interval I; ends at «a=93,
where the 4-modal cellular state

g = 2.94c0042 + 0.28c088z + - - - (3.1)

mutates into a global sink. The apparent crisis of chaos at «=93 is further complicated by
the fact i, has a limited, albeit small basin of attraction for 90.5 < a < 93. This suggests
basin boundary crisis [19-24]. Chaotic time series both prior to and at the crisis exhibit
multiple intermittencies around some hyperbolic point, which is obligatory non cellular
(since 4, is a local sink). This is illustrated at a=91, with initial data u, = T}, (cosjz+2injz),
Figs. 14-17. In Fig. 14, energy in mode one goes through two broad intermittencies; these
are characterized by small amplitude, high frequency oscillations at an average level of 4.
Within the intermittent windows, energy in mode 2 (Fig. 15), at an average level of 2.5,
is comparable to mode 1. The (average) Fourier energy spectrum at the intermittencies
is significantly comparable to that of the strange point u*(a). Movies unmistakedly betray
the two-humped structure. Energy in mode 3 (Fig. 16) confirms high frequency, small
scale oscillations whenever the orbit wanders close to the stable manifold of u*; as if the
boundary of the basin for the chaotic attractor were vested with multiple fingers close to
that stable manifold. Energy in mode 4 (Fig. 17) confirms that u* sits on the boundary
delineating the basins of @, and is responsible for this basin boundary crisis [19-24].

The interval I, of global stability for i, ends at a=117.5. In [28] we suspected some
homoclinic skeleton to underline the onset of chaos at a=117.5. We can now give a much
more precise microscopy of this bifurcation. At a=117.5, we took for initial data

iy + 0.158nz = 0.1sinz + 2.996c0sdz + 0.43cos8z + - - -. (3.2)

The time series in Figs. 18-20 are remarkably akip. to, albeit more chaotic than those for
the perturbed Shilnikov loop in Figs. 8-11; just replace iy by i,. The energy (Fig. 18)
undergoes very high frequency oscillations within intermittcncies close to the quadrimodal
state, before exploding into chaos with an higher average energy. The energy in mode
2 (Fig. 19) dips at very small levels in the vicinity of 4. The energy in mode 4 (Fig.
20) clearly shows the orbit nearly locking onto some metastable torus, around 2.9 before
bursting into homoclinic tangles. For the energy in mode 8 (Fig. 21), the intermittencies
center at 0.4; this confirms the picture of a perturbed Shilnikov tangle around d,, as a
mechanism for onset of chaos. As computed by Manneville [35], the Lyapunov dimension
of chaos is slightly larger than 5 in this case.

The bifurcations of the K-S equation, unravelled in this part, occur on low-dimensional
inertial manifolds. Multiple forward and reverse bifurcations of several fixed points are

10



entangled in a web of Tori, together with “strange” hyperbolic points. For these regimes,
we conjecture that it may be possible to construct a simple reduced normal form for the
ODEs on the inertial manifold using the unstable manifolds of @s3(a),(é4(a) and the two-
humped “strange” fixed point u*(a).

IV. A GEOMETRIC CONSTRUCTION OF THE INERTIAL MANIFOLDS

The K-S equations possess inert.al manifolds ¥°. These are positively invariant regular
objects toward which all solutions tend at (at least) a uniform exponential rate. Let H
be the Hilbert phase space (usually a Sobolev space) and let S(t)uo) denote the trajectory

(solution of the system) starting at ¢ =0 from u,. By an inertial manifold for §(t) we mean
a set ¥ satisfying

S is a finite dimensional Lipschits manifold (4.)
SWY.cY fort20 (42)
There exists a constant k such that ior everyupeH ,there existsto > O (4.3)

(uniformly for uo in bounder sets) such that, for ¢t > ¢,

dist(S(t)uo , )

< dist(S(to)uo, Z)ezp(—Kt) .

We shall present here a geometric method of constructing ¥ for a class of dissipative
systems large enough to contain the one d:mensional Kuramoto-Sivashinski and one and
two dimensional parabolic reaction diffusion equations. Full details will be found in a
forthcoming paper by P. Constantire, C. Foias, R. Temam and B. Nichols [6]. The K-S
equation can be restated abstractly as:

%“: + N(u) = 0 with (4.4)

N(u) = Au + R(u) (4.5)

where 4 is a positive selfadjoint operator and R(u) Is & lower order nonlinear nonhomoge-
neous term. We denote by (A,), the increasing sequence of distinct eigenvalue of 4 and
J, ();) the nondecreasing sequence of eigenvalues counted with their multiplicities. The
linearized around u(t) of N(u), will be denoted by A(t)

Lt = S (ul)v , Ale) = A+ L() (4.6)

The key idea is to use the transport properties of finite dimensional contact elements.
By a finite dimensional contact element we mean a palr (uo, ) With u, € H and R a
11



inite dimensional projector (orthogonal projection operator) in H. One regards P, as the
projector on the tangent space at u, to an infinitesimal surface passing through u,. The
transport under S(t) of this surface induces the transport of (uo, P,) according to

u(t) = S(t)uo (4.7)
;EP(t) +(I - P())A()P(t) + P(t)A(t)*( - P(¢t)) =0 (4.8)
P(0) = Py (4.9)

where A(t) is the linearized (0 6) and A(t)* is the adjoint in H. For any N dimensional
contact element (u, P) we introduce the quantities

A(u) = Maz{(Ag,9)|l9]l =1, Pg=g, g € D(A)} (4.10)

Mu) = Min{(Ag, g)|lgl =1, Pg=0, g€ D(A)} (4.11)

where (,) and || denote the scalar product and the norm in H; D(A) is the domain of A.
It follows from the minimax and mimimin theorem that A(u) > Ay , A(u) € dv41. These
two quantities measure the position of the linear space ker(I — P) relative vo the fixed
orthonormal system of coordinates formed with the eigenvectors (w;) of (Aw; = A,;w;). We
assume that L(t) satisfy bounds of the type

|L(€)v|? € Kalv)? + Ka|Av'/4|? + Ko|AL/?? (4.12)

IL(t)*v|? < Ki|v]® + Ka|AvM/4? + Ks|AL/3)? (4.13)
reflecting the fact that R(u) is assumed to be of lower order (half the number of deriva-
tives at most) than A. We derive under these assumptions differential ineqaalities for the
transported quantities A(¢) = A(P(t)) A = A(P(t)). If the linear diffusion operator 4 has gaps
in the spectrum which are large with respect to constant K, Ka, Ks more precisely if

1/2
(Am+1=Am)* > K1 + K:(-A—#w—‘) + KSA"%MH' (4.14)

for some m, then we can deduce the powerful spectral blocking proposition:
Theorem 4.1 (Spectral blocking property).
Let A(t) = A(P(¢)) A(t) = A(P(t)) be defined in (4.10), (4.11) for P(t) solving (4.7)-(4.9),

then
Am + Am-.-[

(a)
2
for some m satisfying (4.14) then A(t) < Antgnts for all ¢ > ¢y,

if for some ¢y 2 0 A{to) <

if for some tg 20, Ato) > AL%M (b)

12



for some (possibly different) m satisfying (4.14) then A(¢) > A=*A=1 for all ¢t > ¢,. Thus
A(t)(respA(t)) cannot cross large gaps in the spectrum of A from the right (resp left).

We note here that although a condition of the type A(to) > A=ti=#1 can be realized
only if the dimension N of P(t,) is large enough (Ay4; > 4=fi=i1) conditions of the type
A(to) < imtzmti do not impose restrictions on the dimension of P(t) provided the set of
m’s for which (4.14) is valid is not founded. In particular the blocking of A(t) in the N =1
case has important consequences. Let us denote by P, the spectral projector of A on the
span of w,, -, u,. Let us consider the cone in H

¢ = {(wed||(I - Pa)w| < §|p,.w)} (4.18)

We prove the strong squeezing properties.

Theorem 4.2 Let n be large enough. Let w(t) be a solution of
dw

E‘_ + A(t)w =0,

4.18
U(O) = wo ( )

the linearized equation around S(t)uo = u(t). If for some ¢, > 0 w(to) belongs to C, then for
all ¢ > 0 w(t) belongs to C. Moreover, the following alternative holds:

|w(¢)| € |w(0)|ezp(—Kt) forall ¢ > 0 (o)
or there exists a finite
to > O such that the irregularity in (a) holds for ¢t < to and for ¢ > tow(t) belongs to C. (b)

The precise condition on the size of n is givan in [8], but essentially the requirement
is that A\, > 5(Am + Am+1) for some n satisfying the gap condition (4.14) Theorem 4.2 is a
direct consequence of Theorem 4.1 for N = 1. Using a slight modification of Theorem 4.1.
We obtain, also,
Theorem 4.3 (Strong squeezing property) let n be large enough (same conditions as In
Theorem 4.2). Let w(t) = S(t)uo - S(t)u be the difference of two solutions. Then the conclu-
sions of Theorem 4.2 hold for w(t). The strong squeezing property was established for the
Kuramoto-Sivashinski equation in [15]. The consequences of this property regarding the
universal attractor are studied further. We prove
Theorem 4.4. If n is large enough to insure the validity of Theorem 4.3 then the projector
P. is Injective when restricted to the universal attractor X and lts Inverse is Lipschits.
More precisely

(1~ Pz = )| S 3{Tnlz - )]
13



for every x,y in X.

Theorem (4.4) follows easily from Theorem 4.3 but is an important fact. It was known
that because X has finite fractal dimension, there are many projectors that are injective
on X; however, P, is an important explicit one.

Denoting Ca,x = zeX{u € H||(1~ Pa)(u - X)| < }|Pa(u — z)|} we deduce from Theorem
4.3 that S(t)Cax C Cnx if n is large enough, that X c C, x (Theorem 4.4) and that as
long as a solution S(t)uo remains in the complement of C, x, its distance to X decreases
exponentially. Finally, we conclude by showing that the complement of a large ball in H
is included in C, x. For a further consequence of strong squeezing we consider a smooth N
dimensional positively invariant surface. We assume that it is “blocked” in the sense that
Au) > 2eties) for y € T and A(u) = A(P(u)) with P(u) the projector on the tangent space at
u to . We show that under these assumptions, as long as the distance from some solution
S(t)uo to T in attained on Y, it must decay cxponentially (at an explicit uniform rate).

We now proceed to describe the initial data for our construction. They form the
smooth oriented boundary I' of an bounded, open, connected set D included in PvH. N
is chosen sufficiently large such that Ay.; — Ay > 0 is a gap satisfying (4.14) and such
that Ay+1 > 8(Am + Am+1) with a satisfying also (4.14). We denote at each net by P(u) the
projection or. the space N(u)R + T,(T') where T, (I') is the tangent space at u to I'; we design
by v(u) the outward unit normal to I' and we set A(u) = A(P(u)), A(s) = A(P(u)). Then the
properties of I' are

M) < 2B fop 4y e ()
A() > :‘iiz*"—ﬂ for any uel (n
(N(u),¥(u)) > O for any uel (rn
IcCrx (v)

Forauy u€T , N(uR+Tu(l) c C V)

Properties (I) and (II) assert that the initial surface I' is “blocked”. Property (III) shows
that $5(t,u0)| ,at any uo € I' points toward the interlor of D. In applications I is usually
a simple expll.c-ig set: a large sphere for the Kuramoto-Sivashinski equation.

Ultimately, we use the spectral blocking, strong squeez'ng and volume decay properties
in order to construct starting from I' the inertial manifolds. We denote by 3 the integral
manifold having I as initlal data:

Y. =Jsr (4.17)

>0
We establish first using (I) and the spectral blocking property the fact that projection Py
at any point of 3_ is a regular map (has invertible Jacoblan). From the results in Theorem
14



4.4 and condition (IV) for I' it follows that 3° c Cu,x. Since we may take T to lie far away
from X; it follows that 3>nX = ¢ and thus, Py Y NPy X is void. We show that the closure
of Py Y, Py'Y. is included in the union of the disjoint sets Py XUT U Py 3. We use next the
isoperimetric inequality and the exponential decay of surfaces of dimension larger or equal
to N — 1 to show that Py 3, o D. From the backward uniqueness theorem for solutions of
an equation and (III) we deduce that for P in a neighborhood of I' in D the fiber P3!{p}nYT
consists of a single point. Since Py is regular at 3" and since Py ¥ is connected we deduce
that Py restricted to 3 is injective. It follows that D = Py S uPyX Ul and we can define
on D the inverse ® of Py, ®: D — E, Gl = (identity}. We show, using the strong squeezing
property and (V) (Theorem 4.2) that '

(1= Pu)(®(r) - 8(ra))| < 51Pw(8(r1) - 8(rs)] (4.18)

for any ry,ra in D. Finally we show using (II) and the spectral blocking that for any
uo, dist(S(t)uo,Y) decreases exponentially. We conclude that ¥ is an inertial manifold
satisfying, beside properties (4.1), (4.2), (4.3), and (4.19) ¥ is the graph of an explicit
Lipschitz map (4.20) ¥ is the closure of a smooth manifold (21) the N-dimensional volume
of ¥ is finite.

This concludes the outline of the construction of the integral irertial manifold. Needless
to say, it lends itself to fast and robust numerical algoritms. Full details may be found in

8].
V. CONCLUSION

A low dimensional vector fleld skeleton underpins “strong” chaos for the K-S models of
turbulent interfaces. Heretofore it was unsuspected, because of the extreme numericnl
sensitivity of chaos in dissipative PDEs. Indeed, low precision methods of integration ba.ed
on second order schemes [31) are adequate to compute tables of Lyapunov exponents; they
wash out the subtle architecture mirrored by repeated bifurcations and intermittencies.
Iligh precision, high speed, parallel codes ~n future parallel architecture machines shall
play a crucial role in definitely bridging the gap between stroug dynamical chaos and fully
developed turbulence. From a theoretical view point, the fact that a small, yet exotic
200 of hyperbollc points and Torl generates strong chaos supports the current analytic
work initiated [6] by C. Foias, P. Constantin, R. Temam and B. Nichols. We presently
alm at constructing optimal inertial normal forms for the dynamical vector flelds on the
inertial manifolds at different a-regimes. We suspect that the zoo of dynamlcally relevant
strange fixed polnts will be enhanced by specimens with a Cantor-like structure in space
(this has been proven by Michelson [45], for a = oo, for K-8). Ilence, spatial chaos would
intermingle with temporal chaos as the bifurcation parameter is increased to another order
of magnitude.
15
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quadrimodal cellular state, before going into chaotic excursions (o = 117.5).
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